$\left(x+\sqrt{x^{3}-1}\right)^{5}+\left(x-\sqrt{x^{3}-1}\right)^{5},(x>1)$ के प्रसार में सभी विषम घातों वाले पदों के गुणांकों का योग है
$0$
$1$
$2$
$-1$
$(1- x )^{101}\left( x ^{2}+ x +1\right)^{100}$ के प्रसार में $x ^{256}$ का गुणांक है
${(1 + x)^5}$ के विस्तार में पदों के गुणांकों का योगफल होगा
यदि ${(x + y)^n}$ के विस्तार में गुणांकों का योग $4096$ है, तो इसके विस्तार में महत्तम गुणांक का मान होगा
${n^n}{\left( {\frac{{n + 1}}{2}} \right)^{2n}}$ होगा
यदि $\left({ }^{30} \mathrm{C}_1\right)^2+2\left({ }^{30} \mathrm{C}_2\right)^2+3\left({ }^{30} \mathrm{C}_3\right)^2+\ldots \ldots .$. $30\left({ }^{30} \mathrm{C}_{30}\right)^2=\frac{\alpha 60 !}{(30 !)^2}$, है, तो $\alpha \cdot$ बराबर है :